
Training Support Vector Machines
using Gilbert’s Algorithm

Shawn Martin

Sandia National Laboratories
Albuquerque, NM, USA

Nov. 30th, 2005

Outline of Talk
• Support Vector Machines

– Background
– Nonlinear Extension
– Geometric Version

• Gilbert’s Algorithm
– Background
– Problems
– Modifications

• Examples/Comparisons
• Conclusions

Support Vector Machines (SVMs)

1) Starting with a dataset

* i ii
α=∑w x

2) we solve the quadratic program

3) to obtain the normal to the
separating hyperplane

(){ } { }, 1n
i iy ⊆ × ±x

(),
1max ,2

s.t. 0, 0

i i j i j i ji j
i

i i ii

y y

y

α αα

α α

−

≥ =

∑ ∑

∑

x x

*w

{ }: 1i iy =x

{ }: 1i iy = −x

solution
margin

4) Support Vectors are xi such that αi ≠ 0, shown as lying on dashed lines.
Distance between dashed lines is known as solution margin.

Nonlinear/Non-separable Extension of SVMs

1) Map the dataset into a higher dimensional space using a nonlinear map

2) Use the linear SVM classifier in the higher dimensional space.

3) Do this by replacing the inner products (xi,xj) in the SVM problem with a kernel
function, where a kernel function corresponds to Φ such that

4) If our dataset is non-separable, we can use a kernel function of the form

: n nk × →

: .n FΦ →

() () ()(), , .i j i jk = Φ Φx x x x

() (), , .i j i j ijk k Cδ= +x x x x

Geometric Version of the SVM Problem

{ } { }Let : 1 , : 1 , and .i i i iX y Y y S X Y= = = = − = −x x

Then the normal to the separating hyperplane w* can be obtained
from the point s* closest to the origin in the convex hull of the
secant set S.

X

Y

w*

s*

origin

Finding Closest Point on Convex Hull

Q. How can we find the point s* on the convex hull of S closest
to the origin?

A. One solution is to use Gilbert’s Algorithm (1966). This was
originally attempted in (Keerthi et al., 2000).

Overview of Gilbert’s Algorithm

1. Choose a point w1 in S.
2. Identify the point g*(-w1) in S closest

to the origin in the direction of -w1.
3. Identify the point w2 on the line from

w1 to g*(-w1) closest to the origin.
4. Repeat 2-3.

Formalizing Gilbert’s Algorithm (Definitions)

a

b

origin

[a,b]*

x
g*(-x)

g*(x)() (){ }

()
0

0

We define the support function : by

 max , ,

and the contact function * : by
 * ,

for some uniquely defined .

n

m m

n n

m

g

g

g
g

m

→

=

→

=

x x s

x s

Gilbert’s Algorithm
1. Choose a point w1 in S.
2. Identify the point g*(-w1) in S closest to the origin in the direction of -w1.
3. Identify the point w2 = [w1, g*(-w1)]*.
4. Repeat 2-3 indefinitely.
5. s* = limk→∞ wk.

w1
g*(-w1) = w2

g*(-w2)

w3

g*(-w3) = w4 = …

Problem with Gilbert’s Algorithm
Gilbert’s Algorithm often gets “stuck” in very slow
(~1/n) asymptotic convergence.

Can we fix this?

Observations about Gilbert’s Algorithm

1) Gilbert’s Algorithm identifies a subset S’ of S and
iterates between the vectors in the subset
indefinitely.

2) Gilbert’s Algorithm appears to converge faster in
angle than in norm: (wk,s*)/(||wk|| ||s*||) ~ 1/n2.

Modifications to Gilbert’s Algorithm

1) Construct m1 from w1, w2, … by using the subset of S’ = {sj,…,sk}
identified by Gilbert’s Algorithm:

2) Repeat to obtain m2, m3, …
3) Stop when m1, m2, … converges in angle:

1
1

1 k

i
i jk j = +

=
− ∑m w

()1

1

,
.l l

l l

ε−

−

<
m m
m m

Example:
Two Spirals
Dataset

• We compared our method
to Sequential Minimal
Optimization (SMO) and
the Nearest Point
Algorithm (NPA) in
(Keerthi et al., 2000).

• We measured speed using
number of kernel
evaluations.

• We compared the final
solution using the percent
of support vectors.

• We compared
performance accuracy by
using a test set.

• In all cases we used
solution margin (distance
between two classes) to
measure classifier
similarity.

Example:
Wisconsin Breast
Cancer Dataset

• Our
comparisons
indicate that our
method is as fast
and as accurate
as standard
methods.

Example:
Adult-4a Dataset

• In some cases we
also get fewer
support vectors.

Conclusions
• Modified Gilbert’s Algorithm to successfully train SVMs.
• New algorithm appears to be fast.
• Results are as accurate as other methods.
• New algorithm may identify fewer SVs than other methods.
• Theoretical results should be derived to support/refute this

approach.

Future Work

• Another possible direction:
1) Identify subset S’ of S using Gilbert’s Algorithm.
2) Solve for s* directly using S’.

	Training Support Vector Machines using Gilbert’s Algorithm
	Outline of Talk
	Support Vector Machines (SVMs)
	Nonlinear/Non-separable Extension of SVMs
	Geometric Version of the SVM Problem
	Finding Closest Point on Convex Hull
	Formalizing Gilbert’s Algorithm (Definitions)
	Gilbert’s Algorithm
	Problem with Gilbert’s Algorithm
	Observations about Gilbert’s Algorithm
	Modifications to Gilbert’s Algorithm
	Example:Two SpiralsDataset
	Example:Wisconsin BreastCancer Dataset
	Example:Adult-4a Dataset
	Conclusions
	Future Work

